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Traditional image-centered methods of plant identification could be confused due to various views, uneven illuminations, and
growth cycles. To tolerate the significant intraclass variances, the convolutional recurrent neural networks (C-RNNs) are proposed
for observation-centered plant identification to mimic human behaviors. The C-RNNmodel is composed of two components: the
convolutional neural network (CNN) backbone is used as a feature extractor for images, and the recurrent neural network (RNN)
units are built to synthesizemultiview features from each image for final prediction. Extensive experiments are conducted to explore
the best combination of CNN and RNN. All models are trained end-to-end with 1 to 3 plant images of the same observation by
truncated back propagation through time. The experiments demonstrate that the combination of MobileNet and Gated Recurrent
Unit (GRU) is the best trade-off of classification accuracy and computational overhead on the Flavia dataset. On the holdout test
set, the mean 10-fold accuracy with 1, 2, and 3 input leaves reached 99.53%, 100.00%, and 100.00%, respectively. On the BJFU100
dataset, the C-RNN model achieves the classification rate of 99.65% by two-stage end-to-end training. The observation-centered
method based on the C-RNNs shows potential to further improve plant identification accuracy.

1. Introduction

With the development of computer technology, there is
increasing interest in the image-based identification of plant
species. It can get rid of the dependence on the botany
professionals and help the public identify plants easily. With
the growth of demand, a growing number of researchers
began to focus on plant identification and developed various
sophisticated models.

Traditional automated plant identification builds classi-
fiers on top of hand-engineered features whose objects are
flowers, leaves, and other organs. For example, Lee et al. [1]
designed a mobile system of flower recognition using color,
texture, and shape features and the accuracy was 91.26%.
Furthermore, more studies considered the features of leaves.
Novotný and Suk [2], Zhao et al. [3], Liu et al. [4], and
Li et al. [5] extracted shape features of leaves to recognize
the plant species using the nearest neighbor (NN) classifier,
the back propagation (BP) neural network classifier, and the
support vectormachine (SVM) classifier, respectively. En and
Hu [6], Liu and Kan [7], and Zheng et al. [8] used shape

and texture features of leaves to identify the plants with the
base classifier, deep belief network (DBN) classifier, and SVM
classifier, respectively. Wang et al. [9] extracted a series of
color, shape, and texture features from 50 foliage samples, and
the accuracy identified by SVM classifier was 91.41%. Gao et
al. [10] calculated the comprehensive similarity of geometric
features, texture features, and corner distance matrix to
recognize plant leaves and the accuracy on the Flavia dataset
was 97.50%. Chen et al. [11] extracted the distance matrix
and corner matrix of leaves and identified plant leaves in
the top 20 of the highest similarity result set chosen by the
kNNclassifier.The accuracy on Flavia dataset reaches 99.61%.
The handcrafted feature extractor is time-consuming and
relies on the expertise to a certain extent; it also has poor
generalization ability to big data. Therefore, conventional
methods of plant identification are not suitable for images
with huge species and complex background.Developments in
deep learning have made significant contribution to in-field
plant identification.

Deep learning is a machine learningmethod that extracts
features automatically from raw data supervised by an
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end-to-end training algorithm. It has been applied to the field
of plant identification in recent years. Dyrmann et al. [12]
used the CNN to identify weeds and crops at the early growth
stages and achieved 86.2% average accuracy rate. Grinblat et
al. [13] used deep learning for leaf identification ofwhite bean,
red bean, and soybean and the accuracy was 92.6 ± 0.2%.
Zhang and Huai [14] used the CNN to identify the leaves of
the self-expanding dataset based on the PlantNet dataset.The
accuracy using the SVM classifier and the softmax classifier
was 91.11% and 90.90% in simple background and 31.78%
and 34.38% in complex background, respectively. Ghazi et al.
[15] used three deep learning networks, that is, GoogLeNet,
AlexNet, and VGGNet, to identify species on the LifeCLEF
2015 dataset and the overall accuracy of the best model was
80%. Sun et al. [16] designed a 26-layer deep learning model
consisting of 8 residual building blocks for large-scale plant
classification in natural environment and the recognition
rate reached 91.78% on the BJFU100 dataset. The LifeCLEF
plant identification challenge plays an important role in the
field of plant automation recognition. The 2017th LifeCLEF
plant identification challenge provides 10.000 plant species
illustrated by a total of 1.1M images. The winner of the
challenge combined 12 trained models with four GoogLeNet,
ResNet-152, and ResNetXT CNN models on three kinds of
datasets. The Mean Reciprocal Rank (MRP) is 0.92 and the
top 1 accuracy is 0.885 [17].

The previous studies identify plants from a single
image (i.e., perform the image-centered plant identification).
Although these methods are straightforward, they are not
consistent with human cognitive habits. A series of factors
like seasonal color changes, shape distortion, leaf damage,
and uneven illumination cause significant intraclass vari-
ances. In fact, botanists often observe plants from multiple
views or varied specimens, because the combination ofmulti-
ple views can effectively improve the recognition accuracy. To
circumvent the limitations of image-centered identification,
observation-centered identification is proposed to mimic
human behaviors. Each observation includes several images
of the same species with different views. The convolutional
recurrent neural networks (C-RNNs) are trained end-to-
end to automatically extract and synthesize features in one
observation. The recognition accuracy on the Flavia and
BJFU100 datasets is further improved by the C-RNNmodels.

2. The Proposed Method

Almost all public image datasets are image-centered, while
the observation-centered data are constructed based on the
image-centered dataset. So, the plant images of the same
species taken in the nearby time and location are selected
as one observation. The observation-centered training and
testing sets are built using different sets of samples from
an image-centered dataset. To improve the generalization
of the model, a sequence of images in the training set are
permutated randomly.

As shown in Figure 1, the C-RNNmodel inputs all images
in one observation and outputs one prediction, which works
in a many-to-one approach. The C-RNN model consists
of CNN backbones and RNN units. The CNN backbones
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Figure 1: The C-RNNmodel for observation-centered plant identi-
fication. The green arrows are the forward inference and the dashed
red arrows are the truncated back propagation through time.

extract features from each image belonging to one obser-
vation, which include the residual network (ResNet) [18],
InceptionV3 [19], Xception [20], and MobileNet [21]. Then,
the RNN units including the simple RNN [22], Long Short
Term Memory (LSTM) [23, 24], and Gated Recurrent Unit
(GRU) [25] synthesize all features to implement observation-
centered plant identification through the softmax layer. And
the fully connected layer with the rectified linear unit (ReLU)
connects the CNN backbones and the RNN units. Table 1
shows the MobileNet with GRU as the example to illustrate
the network architecture.

As the RNNs with fixed architecture are differentiable
end-to-end, the derivative of the loss function can be cal-
culated with respect to each of the parameters in the model
[26].The categorical cross-entropy loss is used in the C-RNN
model for the multiclassification, and the loss function is
defined to be

𝐿 = ∑
𝑡

𝐿 𝑡 (𝑦𝑛t, 𝑦𝑛t) = −∑
𝑡

𝑦𝑛𝑡 log𝑦𝑛𝑡, (1)

where 𝑦𝑛𝑡 is the 𝑡th element in the classification score vector𝑦𝑛, 𝑦𝑛𝑡 is the 𝑡th element in the classification label vector 𝑦𝑛,
and 𝑛 is the step size of RNN unit.

Theprocess of truncated BPTT is shown as the red dashed
arrows in Figure 1, and the gradient calculation formulas for
the weights 𝑉,𝑊, and 𝑈 are expressed as follows [27]:

𝜕𝐿𝜕𝑉 = 𝜕𝐿𝜕𝑦3
𝜕𝑦3𝜕𝑉 = 𝜕𝐿𝜕𝑦3

𝜕𝑦3𝜕𝑧3
𝜕𝑧3𝜕𝑉 = (𝑦3 − 𝑦3) ⊗ 𝑠3, (2)

𝜕𝐿𝜕𝑊 = 𝜕𝐿𝜕𝑦3
𝜕𝑦3𝜕𝑠3
𝜕𝑠3𝜕𝑊, (3)

𝜕𝐿𝜕𝑈 = 𝜕𝐿𝜕𝑦3
𝜕𝑦3𝜕𝑠3
𝜕𝑠3𝜕𝑈 , (4)

𝑧3 = 𝑉𝑠3, (5)

𝑠3 = tanh (𝑈𝑥3 +𝑊𝑠2) , (6)

where 𝐿 is the loss function, 𝑠 is the simplification of the RNN
unit calculation process, and ⊗ is the outer product of two
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Table 1: C-RNN architecture.

Layer name Input size Output size Filter shape

cnn 1 224 × 224 × 3 1 × 1024 MobileNet
Alpha = beta = 1

cnn 2 224 × 224 × 3 1 × 1024 MobileNet
Alpha = beta = 1

cnn 3 224 × 224 × 3 1 × 1024 MobileNet
Alpha = beta = 1

time distributed (fc) 3 × 1024 3 × 1024 1024 × 1024
rnn (gru) 3 × 1024 1 × 128 1024 × 128
fc (softmax) 1 × 128 1 × 32 128 × 32
vectors. Considering (6), 𝑠 is related to𝑊 and 𝑈, and it can
be deduced that
𝜕𝑠𝑡𝜕𝑊 = 𝜕𝑠𝑡𝜕𝑊 + 𝜕𝑠𝑡𝜕𝑠𝑡−1

𝜕𝑠𝑡−1𝜕𝑊
= (1 − 𝑠𝑡)2 (𝑠𝑡−1 +𝑊𝜕𝑠𝑡−1𝜕𝑊 ) ,
𝜕𝑠𝑡𝜕𝑈 = 𝜕𝑠𝑡𝜕𝑈 + 𝜕𝑠𝑡𝜕𝑠𝑡−1

𝜕𝑠𝑡−1𝜕𝑈 = (1 − 𝑠𝑡)2 (𝑥𝑡 +𝑊𝜕𝑠𝑡−1𝜕𝑈 ) .
(7)

So, the gradients of𝑊 and 𝑈 are expressed as follows [27]:

𝜕𝐿𝜕𝑊 =
3∑
𝑘=0

𝜕𝐿𝜕𝑦3
𝜕𝑦3𝜕𝑠3 (

3∏
𝑗=𝑘+1

𝜕𝑠𝑗𝜕𝑠𝑗−1)
𝜕𝑠𝑘𝜕𝑊,

𝜕𝐿𝜕𝑈 =
3∑
𝑘=0

𝜕𝐿𝜕𝑦3
𝜕𝑦3𝜕𝑠3 (

3∏
𝑗=𝑘+1

𝜕𝑠𝑗𝜕𝑠𝑗−1)
𝜕𝑠𝑘𝜕𝑈 .

(8)

So, the C-RNN model can be trained end-to-end and
the identification error is minimized by stochastic gradi-
ent descent with truncated back propagation through time
(BPTT).

3. Experiment and Results

In this section, the method of constructing the observation-
centered dataset is described in detail. Then, extensive exper-
iments are conducted on the leaves observation-centered
dataset with the combinations of different CNN backbones
and RNN units to show a significant performance improve-
ment compared with traditional transfer learning.

3.1. The Dataset. The leaves observation-centered dataset is
based on the Flavia dataset [28]. There are 1,907 samples of
32 species in Flavia and each sample is an RGB leaf scan
image with white background. All of the images for the same
class were taken in the same experimental environment, so
they could be thought of as the observation-centered data.
Figure 2 shows the observation-centered example for leaves
with different input numbers.

To reduce variability and overfitting, 10-fold cross-
validation is adopted. The dataset is divided into 10 comple-
mentary subsets randomly. In one fold of the experiment, one

(a)

(b)

(c)

Figure 2: Observation-centered sample with (a) one, (b) two, and
(c) three leaves. Samples containing less than three leaves are padded
with zero.

subset is randomly chosen as the test set and the rest belong
to the training set. Considering the size of the dataset, there
are 1717 images for training and 190 images for test in the first
9 folds and there are 1710 images for training and 197 images
for test in the 10th fold.

To simulate collection of multiple leaves from one tree,
each image is combined with 0 to 2 randomly chosen leaves
of the same species to construct one observation-centered
sample. The observation-centered samples with less than 3
leaves are padded with 0 (as shown in Figure 2). All leaves
in the test set are held out from the training set for each fold.

3.2. Results. Themodels are implemented by the deep learn-
ing framework Keras [29] with TensorFlow [30] backend. All
the experiments were conducted on an Ubuntu 16.04 Linux
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Figure 3: Effects of (a) ResNet50, (b) InceptionV3, (c) Xception, and (d) MobileNet CNN with three different RNN units on the 10-fold test
accuracy. The pentagrams in (b), (c), and (d) represent the outlier of the results.

server with an AMD Ryzen 7 1700x CPU (16GB memory)
and an NVIDIA GTX 1070 GPU (8GB memory). The batch
size for each network is 32, the learning rate is 0.0001, and the
optimizer is RMSprop in training phase. The test accuracy is
compared after 50 epochs.

3.2.1. Effects of RNN Units and CNN Backbones. To explore
the best RNN units, the models are implemented with differ-
ent RNN units: simple RNN, LTSM, and GRU. Besides, the
effects of different CNN backbones are also considered. Four
state-of-the-art CNN backbones—ResNet50, InceptionV3,
Xception, and MobileNet models—are pretrained on the
ImageNet dataset with 1.2 million images of 1000 classes.
Then, the last fully connected layers are replaced by the
aforementioned RNN units.

Figure 3 shows the 10-fold test accuracy of eachCNNwith
3 different RNN units at the last epoch. All of the RNN units
work well with InceptionV3, Xception, and MobileNet, and
the test accuracy is close to 100%; only several outliers exist
as Figures 3(b), 3(c), and 3(d) indicate.The effect of ResNet50
was marginal due to the unstable convergence and the test
accuracy is about 80% as shown in Figure 3(a).

Table 2: 10-fold test mean accuracy with different CNN and RNN
units.

Simple RNN LTSM GRU
ResNet50 0.7987 0.8276 0.7973
InceptionV3 1.0000 0.9995 0.9995
Xception 0.9989 0.9995 1.0000
MobileNet 0.9995 1.0000 1.0000

To explore the best combination of CNN and RNN,
the means of 10-fold test accuracy at the last epoch are
listed in Table 2. The combinations of InceptionV3 with
simple RNN, Xception with GRU, MobileNet with LTSM,
and MobileNet with GRU outperform the others. All of the
four models achieve 100% mean accuracy. Considering that
the InceptionV3 with simple RNN has 2,249,880 trainable
parameters, the Xception with GRU has 2,545,056 trainable
parameters, the MobileNet with LTSM has 1,644,064 train-
able parameters, and the MobileNet with GRU has 1,496,480
parameters, the MobileNet with GRU model with fewer
parameters is considered as the best model.
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Figure 4: The mean of training loss, training accuracy, and test
accuracy of the MobileNet with GRU model in one fold.

The MobileNet backbone for the best model has 27
convolutional layers counting depth-wise and pointwise con-
volutions as separate layers, and the width multiplier and
the resolution multiplier are 1. The number of the FC layer
units after MobileNet backbone is 1024 and the number of
the GRU unit hidden nodes is 128. The total number of
the network parameters is 4,725,344 and there are 3,228,864
untrained parameters. Figure 4 shows the training process of
the bestmodel.The training loss declines rapidly in the first 10
epochs and decreases slowly in the next 10 epochs, and then
it approaches 0 at the 50th epoch. The training accuracy and
test accuracy rise rapidly in the first 5 epochs and increase
slowly in the next 5 epochs, and then they approach 1 finally.
The increments in both training and test accuracy indicate
that the model is not overfitted.

3.2.2. Comparison with Transfer Learning. To make a fair
comparison, the MobileNet retrained by traditional transfer
learning is compared to the MobileNet with GRU model
when inputting 1 to 3 leaves. When the number of inputting
leaves is smaller than 3, the extra input channels of the RNN
units were filled with 0.

Figure 5 shows the 50th epoch test accuracy. The 10-fold
testmean accuracy of retrainedMobileNet is 99.79%, and that
of our model inputting 1 leaf, 2 leaves, and 3 leaves is 99.53%,
100.00%, and 100.00%, respectively. The result shows that the
traditional transfer learning is better when inputting only 1
leaf, while the C-RNNs show advantage when observation-
centered images are available.

3.2.3. Comparison with Non-End-to-End Method. In order
to evaluate the effect of end-to-end training for the C-
RNN in the observation-centered identification, a compar-
ative experiment with a non-end-to-end method, that is,
majority voting, was carried out. Majority voting got 0.667
for the average classification score in LifeCLEF 2015 plant
task [31]. The experiments have been performed on the
BJFU100 [16] dataset. The BJFU100 dataset consists of 10,000
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Figure 5: The MobileNet with GRU model compared with tradi-
tional transfer learning.

Figure 6: Each column shows one observation-centered sample
from the BJFU100 dataset.

images with 100 species of ornamental plants in Beijing
Forestry University campus by a mobile phone. Two images
of the same class taken in the nearby time and location
are selected as one observation. Figure 6 shows the typical
observation-centered samples selected from the BJFU100
dataset.

TheCNNuses the softmax classifier to identify one image
at one time. Then, majority voting gives the final prediction
by counting votes from all CNN predictions.The CNN in the
majority voting is trained end-to-end on a single image, while
the error of voting cannot be corrected by back propagation
and stochastic gradient descent.

The MobileNet is the CNN for both C-RNN and major-
ity voting. Firstly, the MobileNet is trained on a single
image of BJFU100 for 86 epochs with the test accuracy of
95.8%. The majority voting has no trainable parameters and
directly inputs the prediction of MobileNet, while the C-
RNN model can be further fine-tuned by second-stage end-
to-end training.The trainedMobileNetwithout the final layer
is transferred into the C-RNN model for further 20-epoch



www.manaraa.com

6 Journal of Electrical and Computer Engineering

Majority voting
MobileNet with GRU

5 82 14 17 2011

Epochs

0.965

0.970

0.975

0.980

0.985

0.990

0.995

Te
st 

ac
cu

ra
cy

Figure 7:The test accuracy of C-RNN evolves as training advances.

end-to-end training. The training parameters and networks
parameters are the same as the above experiments except that
the batch size is changed to 16.

The single MobileNet, majority voting, MobileNet with
simple RNN, MobileNet with LSTM, and MobileNet with
GRU achieve the test accuracy of 95.8%, 98.95%, 99.55%,
99.35%, and 99.65%, respectively. Figure 7 shows the function
of the test accuracy of MobileNet with GRU and the majority
voting during training. The C-RNN model trained by two-
stage end-to-end training outperforms the majority voting
method by 0.7%.

4. Conclusions

In this paper, the C-RNN models were proposed for
observation-centered plant identification. The CNN back-
bones extract features and the RNN units integrate features
and implement classification. The combination of MobileNet
and GRU is the best trade-off of classification accuracy
and computational overhead on the Flavia dataset. The
test accuracy reaches 100%, while it has fewer parame-
ters. Experiments on the BJFU100 dataset show that the
C-RNN model trained by two-stage end-to-end training
further improves the accuracy of majority voting method
by 0.7%. The proposed C-RNN model mimics human
behaviors and further improves the performance of plant
identification, which has great potential in in-field plant
identification.

In the future work, an observation oriented dataset with a
large amount of plants in an unconstrained environment will
be constructed for further experiments.
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